Search results

Search for "cell membrane" in Full Text gives 114 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • intracellular Ca2+ in cells and tissues. One of the most important criteria of anti-inflammatory drugs is the direct delivery to the inflamed tissue [96][97][98]. To increase the targeting ability, anti-inflammatory agents can be wrapped with a cell membrane camouflage technique [99][100][101]. For example, Ma
PDF
Album
Review
Published 12 Apr 2024
Graphical Abstract
  • well as in biological systems. Since the cell membrane is negatively charged, the interaction between NPs and cell membrane or organelles can be highly influenced by the zeta potential. There is an increased interest in integrating data on metal oxides in the field of nanotoxicology that would be able
  • biocompatibility on NP toxicity. These properties of NPs determine their toxicity and interaction with the cell membrane damaging human health and the environment [12]. The toxic effect of NPs can be used as a medical treatment for diseases at the cellular level, that is, targeting and destroying cancerous cells
  • NPs and its influence on toxicity. Methods and Materials Dataset The study is based on two datasets, that is, dataset I (zeta potential) and dataset II (cell membrane damage). Dataset I consists of 18 metal oxide nanoparticles (MeOx NPs) with stoichiometries of MO, MO2, MO3, M2O3, and M3O4. This data
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • destabilization of the bacterial cell membrane by interactions with the nanocarriers (thus allowing for the penetration of the drug into the bacteria) is not known (Figure 1e). Yet, the accumulation of ONPs in bacterial cells is crucial if ONPs are to be used for fluorescent labelling of cells. Also, in the case
  • been designed to allow for the modification of their fluorescence properties. This also modified the outer surface chemistry; thus, the ability of the NPs to pass through the cell membrane was possibly facilitated. The localization of the fluorescent BSA/PDA NPs related to the cells was investigated by
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • cancer cells, likely attributed to particle uptake through endocytosis pathways, including phagocytosis and macropinocytosis [51]. The uptake process depends on cell membrane and particle properties, including size, shape, composition, and surface properties. These factors play a crucial role in particle
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • toxicity through an ionic mechanism followed by the generation of reactive oxygen species (ROS). Another, biomarker for ROS is lipid peroxidation [38] as free radicals cause lipid peroxidation inside the cell membrane. The catalytic properties of the metals are also responsible for an increased toxicity of
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • nanoparticles could accumulate in the site of inflammation delivering the drug in the surroundings of their molecular target. In addition, nanocarriers may pass through the cell membrane via endocytosis to avoid BNZ efflux via the P-glycoprotein efflux pump [14][15][16], thus delivering the drug more
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • ) [16]. Unfortunately, confocal imaging is limited by relatively low throughput (even with automation) and can be ambiguous when determining internalization within 500 nm of the cell membrane [17]. However, widefield fluorescence microscopy is still widely used when it comes to observing the expression
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • SH-SY5Y cells, and no hemolysis was observed. The presence of Tat on the surface of the nanoparticles enabled cell membrane penetration and uptake in HeLa Cells. The effect of electrolytes in the aqueous phase on Polysorbate 80-based PIC nanoemulsions and derived PLGA nanoparticles has been explored
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • larger molecules. Fenestrated capillaries are more permeable than the continuous endothelium and occur in endocrine organs such as the thyroid gland and kidneys. The holes in the cell membrane (fenesters) allow for the selective exchange of larger substances and molecules, for example, hormones, as well
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic
  • diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising
  • intended function of the NPs, resulting in changes of biological behavior and loss of function [6][7]. Moreover, the protein corona can accelerate RES/MPS uptake and interfere with the targeting ability of NPs [8]. The biomimetic technique of cell membrane coating, which employs naturally cell-derived
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • translated to drug delivery systems for lung and brain targeting [119][120][121][122]. Biomimetic cell membrane protein-decorated NPs successfully mitigate immune system recognition, increase blood circulation time, improve nonspecific tumor targeting, and increase tumor homing potential. NPs with red blood
  • cell-like (RBC) surfaces, a “do not eat me” CD47 cell signal, and an immuno-suppressive protein shell instead of, or combined with, a PEG corona are among the most common biomimetic cell membrane-based NP examples in literature. So-called red blood cell vesicle shell nanoparticles (RVPNs), or RBC
  • membrane-decorated NPs, platelet membrane-coated core–shell nanovesicles, and cancer cell membrane-coated nanoparticles are also versatile biomimetic nanocarriers showing improved biodistribution and increased tumor-homing potential [127][128][129][130]. Among them, cancer cell membrane biomimetic NPs may
PDF
Album
Review
Published 22 Feb 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • the outer cell membrane and as such, are less likely to prompt resistance in microorganisms. In addition, their tunable sizes, shapes, and high surface area-to-mass ratio offer increased interactions with cells [8]. The prevalent MNPs used today as antimicrobial agents are copper [9] (or copper oxide
  • the bacterial cell membrane [19][20], allowing its penetration inside the cytoplasm. This leads to the leakage of cellular components through the pores of the perforated cellular membrane. Once inside, the ions promote reactive oxygen species (ROS) generation, deactivate proteins, and block DNA
PDF
Album
Full Research Paper
Published 12 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • compounds act as reducing agents, as well as to changes in the shape, size, and size distribution of the resulting Ag nanoparticles. Cytotoxic behavior It has been reported that several cytotoxic mechanisms of AgNPs can cause DNA, mitochondrial, and cell membrane damage as well as apoptosis [44]. Here, the
  • concentrations, however, necrosis (black box) predominates, where the formation of cellular debris and damage to the cell membrane are detected. Depending on the level of stress exerted on the cell, this behavior will trigger cell death [47]. Çìftçì et al. [48] suggested that AgNPs induce apoptosis and necrosis
  • metalloproteinases (MMPs), the activity of which is favored by reactive species, and they have been shown to be directly involved in death mechanisms such as apoptosis, causing damage at the cell membrane level. In contrast, in monocytes, which are also high in MMPs, their activation mechanism is largely dependent
PDF
Album
Full Research Paper
Published 13 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • literature, there are various studies showing consistency with our results. Varan et al. reported that cationic nanoparticles have a higher tendency to interact with the negatively charged cell membrane [67]. Accordingly, Verma et al. stated that the surface properties and charges of nanoparticles play an
  • essential role in the interaction between nanoparticles and cell membrane and the subsequent intracellular fate of the nanoparticles [68]. Similarly, Chen et al. revealed that PLGA NPs coated with CS had higher anticancer activity then unmodified formulations [69]. When DCX-loaded PLGA NPs were compared to
PDF
Album
Full Research Paper
Published 23 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • biological functions, including embryogenesis, maintenance of tissue integrity, immune response, and inflammation. Integrins consist of two subunits, α- and β- chains, spanning the cell membrane and forming the receptor in the plasma membrane, characterized by noncovalent interactions [10]. Integrins bind to
PDF
Album
Review
Published 08 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • ]. Contrarily, nanoparticles composed of a lipid bilayer with cores of different crosslinking extent showed higher uptake of softer particles in MCF-7 cells, which was thought to be due to a melting process of particles with the cell membrane that consumed less energy than endocytosis [8]. Regarding the in vivo
PDF
Album
Full Research Paper
Published 16 Aug 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • bacterial cell membrane and inhibiting the synthesis of proteins and DNA [15]. Chu et al. [16] reported that BBR showed no antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) in the range of concentrations from 1 to 64 µg/mL. However, inhibition of MRSA biofilm formation was
  • ratio facilitate interaction and absorption onto the bacterial cell membrane given the benefit of nanoscale size. According to previous studies, BBR can penetrate the phospholipid bilayers and then accumulate in the MRSA cell membrane, in which unsaturated fatty acids are the target of BBR-induced
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • exhibit greater flexibility [26]. The morphological imaging on the micro-/nanoscale of the cell membrane in extracellular environments with different stiffness values is shown in Figure 3c. The leading edge of the PC-3 cell membrane on stiff substrates is prominent, with a more pronounced ridge-like
  • imaging of the cell membrane. We observed that prostate cancer cells exhibit a strong migration ability by sensing changes in the extracellular environment through actin polymerization and filamentous pseudopods. This is because the role of actin polymerisation in cell adhesion structure formation
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Detection and imaging of Hg(II) in vivo using glutathione-functionalized gold nanoparticles

  • Gufeng Li,
  • Shaoqing Li,
  • Rui Wang,
  • Min Yang,
  • Lizhu Zhang,
  • Yanli Zhang,
  • Wenrong Yang and
  • Hongbin Wang

Beilstein J. Nanotechnol. 2022, 13, 549–559, doi:10.3762/bjnano.13.46

Graphical Abstract
  • (–NH2), and carboxyl (–COOH) groups [11][12][13][14]. The surface of GNPs can be easily modified with good stability. Thus, they can penetrate the cell membrane and selectively interact with target biomolecules in cells [15][16][17][18]. So far, a variety of functionalized GNPs, whose properties were
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • peroxides and free oxygen radicals increase. Damage to phospholipids, which contain large amounts of unsaturated fatty acids and are sensitive to degradation by hydroxyl radicals, deteriorates the structure of the cell membrane [3]. Antioxidants are compounds that capture and stabilize free radicals and
  • hydroethanolic solution (30% v/v) and ethosomal formulations were not toxic to the cells and can be safely used. It has been stated in many studies that ETHs and other phospholipid-based carrier systems were not cytotoxic due to their similarity to the cell membrane structure. For our active substance EGCG, the
PDF
Album
Full Research Paper
Published 31 May 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • photocatalytic reaction, as a result of which anatase has been found to have the highest antimicrobial activity among all crystal structures of TiO2 [79]. The mechanisms of titania-induced biocidal activity are mostly by an oxidative attack on the outer/inner cell membrane of the microorganism, as well as
PDF
Album
Review
Published 14 Feb 2022

Alteration of nanomechanical properties of pancreatic cancer cells through anticancer drug treatment revealed by atomic force microscopy

  • Xiaoteng Liang,
  • Shuai Liu,
  • Xiuchao Wang,
  • Dan Xia and
  • Qiang Li

Beilstein J. Nanotechnol. 2021, 12, 1372–1379, doi:10.3762/bjnano.12.101

Graphical Abstract
  • possibility for the early diagnosis of cancer [7]. In recent decades, anticancer drugs have been developed in great number, enabling the control and treatment of many cancers to improve life quality and life span of people. Many approved anticancer drugs have significant effects on cell membrane proteins and
  • caused by the more complex distribution of biomolecules, such as proteins and sugars, existing on the normal cell membrane surface than that on the cancer cell surface [28][29][30]. The statistics of the Young's modulus values of the four kinds of cells are illustrated in Figure 4a. The Young’s modulus
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2021

Biocompatibility and cytotoxicity in vitro of surface-functionalized drug-loaded spinel ferrite nanoparticles

  • Sadaf Mushtaq,
  • Khuram Shahzad,
  • Tariq Saeed,
  • Anwar Ul-Hamid,
  • Bilal Haider Abbasi,
  • Nafees Ahmad,
  • Waqas Khalid,
  • Muhammad Atif,
  • Zulqurnain Ali and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2021, 12, 1339–1364, doi:10.3762/bjnano.12.99

Graphical Abstract
  • ). Several studies have indicated that spinel ferrite MFe2O4 (M = Fe, Co, Ni, Zn) NPs cause cytotoxicity via oxidative stress which results in damage to the cell membrane, proteins, and DNA [41][42][43]. However, how NPs are processed inside the cell is also a contributing factor in ROS production [44]. For
PDF
Album
Full Research Paper
Published 02 Dec 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • toxic and considered biologically inert [44][57][58]. Numerous in vitro studies carried out using high-throughput techniques such as microscopic techniques, TEM, and ICP-MS revealed the fate of nanoparticles and their interaction at the interface between the metal surface and cell membrane. Electron
PDF
Album
Review
Published 18 Aug 2021
Other Beilstein-Institut Open Science Activities